• Wood supply
• Campus growth & future needs
• Wood boilers
• Proposed sites
• Costs & savings
• Funding
• Recommendations
CMU Wood Boiler Plant

(note: only water vapor is coming from stack)

photo - Jim Leidel 2005
Existing Central Heating Plant

<table>
<thead>
<tr>
<th>Unit</th>
<th>Capacity (MMBTU/hr)</th>
<th>Year Installed</th>
<th>Age in years / Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>100</td>
<td>1969</td>
<td>39 / good</td>
</tr>
<tr>
<td>B-2</td>
<td>100</td>
<td>1969</td>
<td>39 / good</td>
</tr>
<tr>
<td>B-3</td>
<td>34</td>
<td>1959</td>
<td>49 / fair</td>
</tr>
<tr>
<td>B-4</td>
<td>32</td>
<td>1957</td>
<td>51 / marginal</td>
</tr>
<tr>
<td>Total</td>
<td>265</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Oakland University Ten Year Fall Enrollment Growth with 2020 Vision
Oakland University Ten Year Energy Growth with 2020 Vision

2020 Projection based on $0.085/kWhr electricity and $11/MMBTU gas
EPI Fluid Bed
(Steam & HW)

English Stoker
(Steam & HW)

Hurst Stoker
(HW Only)

Vynke Stoker
(Steam & HW)
Typical Vynke Plant Layout
Three Proposed Site Locations
Estimated Project Budget for Site Two

Site #2 at Spencer Substation

<table>
<thead>
<tr>
<th>Construction Costs:</th>
<th>Feet</th>
<th>Cost/ft</th>
<th>Cost</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTHW connection</td>
<td>1,200</td>
<td>$2,750</td>
<td>$3,300,000</td>
<td></td>
</tr>
<tr>
<td>13.2kV electric connection</td>
<td>300</td>
<td>$250</td>
<td>$75,000</td>
<td></td>
</tr>
<tr>
<td>Sitework: development, parking, etc…</td>
<td></td>
<td></td>
<td>$1,000,000</td>
<td>allowance</td>
</tr>
<tr>
<td>Roadways</td>
<td>1,300</td>
<td></td>
<td>$2,250,000</td>
<td>estimate based on comparison to site #1 estimate</td>
</tr>
<tr>
<td>Storm water relocation</td>
<td></td>
<td></td>
<td>$-</td>
<td></td>
</tr>
<tr>
<td>Boiler Plant</td>
<td></td>
<td></td>
<td>$25,540,000</td>
<td>EPI fluidized bed with steam cogeneration option</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>$32,165,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner Costs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permits & agency reviews</td>
</tr>
<tr>
<td>Construction contingency</td>
</tr>
<tr>
<td>Contractor fees, general conditions, insurance</td>
</tr>
<tr>
<td>Construction Subtotal</td>
</tr>
</tbody>
</table>

| Total Project Cost | $43,870,745 |
Operating Cost Estimates

Operating Savings, $MM

Annual Operating Costs, $MM

Current: $5.00
EPI 2-Turbine: $1.649
EPI Peak Shave: $1.647
EPI 1-Turbine: $1.337
English Hot Water: $1.430

- Ash Disposal
- Maintenance
- Labor
- Wood
- Natural Gas
- Power
Estimated Payback

Biomass boiler plant $43.9M

Avoided cost for existing B-4 ($ 3.0M)
Avoided cost for oil system ($ 1.3M)

Net biomass boiler plant cost $40.3M

Net annual operating costs $ 1.7M

Simple Payback 23-24 yrs
Overview of an Integrated, Renewable Energy Supply Infrastructure

Biomass Boiler

Wood chips

Biomass ash

filters

fan

Biomass ash

Steam-turbine

Generator

Condenser

Hot & Chilled Water to Oakland University Campus
Overview of an Integrated, Renewable Energy Supply Infrastructure

Existing Diesel Generators for Backup & Peak Power (Biodiesel Capable)

Biomass Boiler

Wood chips

Biomass ash

Filtration

Steampower

Generator

Substation

Wind Turbines

Sustainable Power

Absorption Chillers in DHE, NFH, & VAH (Can serve 37% of campus)

Hot & Chilled Water to Oakland University Campus
Overview of an Integrated Renewable Energy Supply Infrastructure

<table>
<thead>
<tr>
<th></th>
<th>Existing Fossil Fuel Mix</th>
<th>Proposed Renewable Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermal (Heating)</td>
<td>Electrical (Heating)</td>
</tr>
<tr>
<td>Central Heating Plant (natural gas)</td>
<td>100%</td>
<td>20%</td>
</tr>
<tr>
<td>Detroit Edison</td>
<td>95%</td>
<td>20%</td>
</tr>
<tr>
<td>Diesel Generators</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Biomass Boiler Plant</td>
<td>80%</td>
<td>50%</td>
</tr>
<tr>
<td>Wind Power</td>
<td></td>
<td>20%</td>
</tr>
<tr>
<td>Totals</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Proposed Funding Sources

1. Issue 15 to 20 year bonds
2. Seek partners willing to enter into a third party “owned & operated” arrangement. Several potential parties have been identified that could provide this option.
Recommendations

• Select project site
• Select financing method
• Solicit bids for design/build contractor
• Begin the detailed engineering for the boiler plant, building, roadways, and utility interconnections to the selected site
• Begin permitting process
• Establish a utility interconnection agreement
Biomass Power
A Sustainable Energy Option for the Future of Oakland University