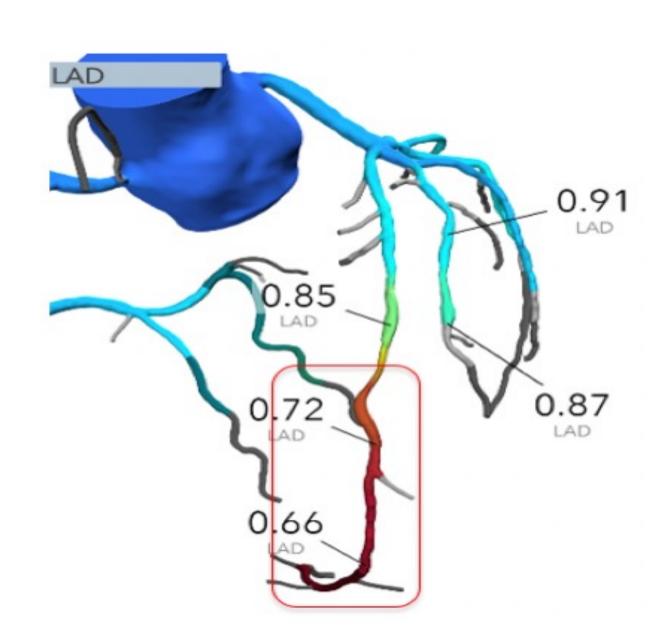


Late Outcomes for Patients with Acute Chest Pain and Positive Fractional Flow Reserve by Computed Tomography


Zach Rollins¹, Jason Schott MD², Robert Safian MD²

¹Oakland University William Beaumont School of Medicine, Rochester, Michigan ²Department of Cardiovascular Medicine, Beaumont Hospital, Royal Oak, Michigan

OAKLAND UNIVERSITY WILLIAM BEAUMONT

Introduction

- Testing with fractional flow reserve derived from computed tomography (FFR_{CT}) can be used to stratify otherwise indeterminate grade stenoses on cardiac computed tomography angiography^{1,2}.
- Short term data in patients with acute chest pain (ACP) and FFR_{CT} showed better outcomes at 90 days for negative FFR_{CT} compared to positive results³.
- Long-term clinical outcomes using FFR_{CT}
 have been reported in stable heart disease
 but not for patients with ACP².
- This study is the first to analyze late clinical outcomes in patients with ACP who underwent FFR_{CT}.
- We hypothesized that FFR_{CT} could be used to accurately predict which patients benefit from ICA and revascularization, therefore improving the workup of ACP in the acute setting.

Figure 1: FFR_{CT} coronary artery reconstruction demonstrating physiologic decreased flow with red in the left anterior descending artery (LAD).

Aims and Objectives

- Analyze the long-term risk of death, myocardial infarction, invasive coronary angiography, and coronary revascularization after FFR_{CT}.
- Identify any discrepancies between FFR_{CT} and invasive testing.
- Determine the diagnostic value of including FFR_{CT} in patients with ACP and associated costs.

Methods

- Over 2015-2018, 389 patients presented to Beaumont with ACP and underwent FFR_{CT}.
- Retrospective review of medical records was used to assess for mortality, MI, revascularization, and ICA over three years of follow-up.
- Additional variables included correlation of FFR_{CT} results to invasive testing, physician rationale for withholding revascularization, estimated cost, and accuracy of FFR_{CT} interpretation.
- Appropriateness of revascularization was determined by a blinded cardiologist based on established guidelines.

Results

 The sensitivity, negative predictive value, specificity, positive predictive value, and accuracy of FFR_{CT} assessing obstructive disease are 0.94, 0.97, 0.89, 0.77, and 0.91, respectively.

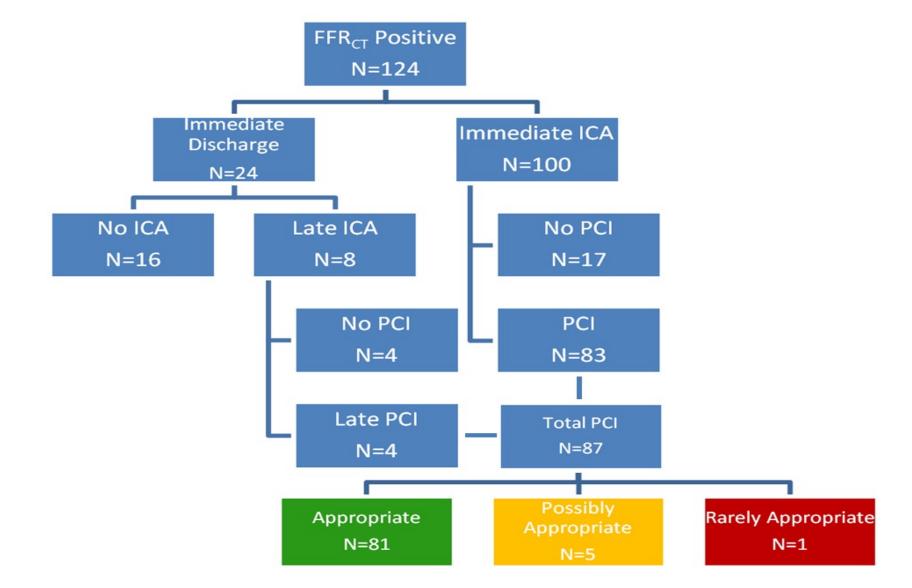


Figure 1: Positive FFR_{CT} outcomes.

 Among the 24 positive FFR_{CT} patients without immediate ICA, late cardiovascular events included 1 death of unknown cause, 2 MIs, and 4 appropriately revascularized.

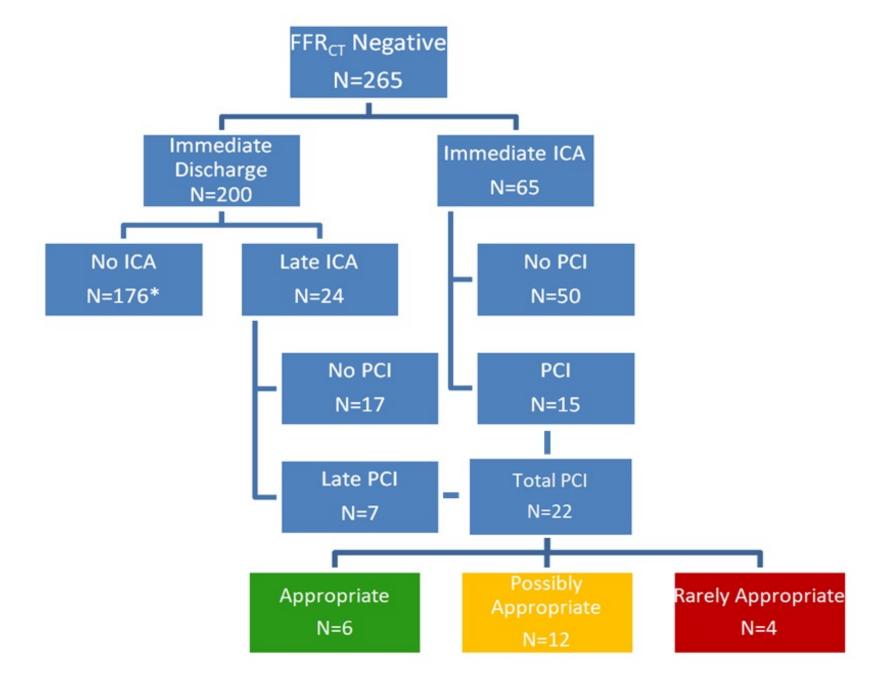


Figure 2: Negative FFR_{CT} outcomes.

 Of 200 negative FFR_{CT} patients without immediate ICA, no cardiac deaths, 1 MI, and 24 non-urgent ICA occurred in follow up (mean 41±10 months) with appropriate revascularization in 2.

Conclusions

- Positive FFR_{CT} is strongly associated with obstructive disease that benefits from ICA.
- Negative CCTA is associated with an excellent long-term prognosis without intervention, with a risk of late death and MI at 0.4% over three years of follow-up.
- FFR_{CT} can be used to accurately risk stratify patients presenting with ACP and can further guide which patients will benefit from ICA. This in turn will result in decreased costs from unnecessary ICA.
- Therefore, FFR_{CT} should be adopted into Emergency Department triage algorithms for patients with ACP to improve patient outcomes.

References

- 1. Min J, Leipsic J, Pencina M, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 2012;308:1237-45. doi: 10.1001/2012.jama.11274.
- Patel MR, Norgaard BL, Fairbairn TA, et al. One-year impact on medical practice and clinical outcomes of FFRct: the ADVANCE Registry. JACC Cardiovas Imaging 2019 [E pub ahead of print], https://doi:10.1016/j.jcmg.2019.03.003.
- 3. Chinnaiyan KM, Safian RD, Gallagher ML, et al. Clinical adoption of CT-derived fractional flow reserve in the Emergency Department. J Am Coll Cardiol Img 2019 (in press).

Acknowledgements

Thank you to Olivia Allen DO, Adam Hafeez MD, Elvis Cami MD, Kavitha Chinnaiyan MD, Michael Gallagher MD, Timothy A. Fonte, Gilbert L. Raff MD, Brian M. Renard MD, and Abhay Bilolikar MD for your work on this project.