Effectiveness of Prenatal Screening Tests on Predicting Cardiac Abnormalities

OAKLAND UNIVERSITY WILLIAM BEAUMONT

Introduction	
 <u>Congenital heart disease (CHD):</u> Most common birth anomaly - 28% of major congenital anomalies¹ Infant mortality rate of 30-50%² Current prenatal screening tests detect chromosomal anomalies - trisomy 13, 18, and 21 Minimal knowledge on screening's detection for CHD 	 Identify and on three prenate screening, and risk of fetal car
 Screenings: Anatomy Ultrasound (US) 18-20th week Sensitivity (44.0%) vs. Specificity (99.9%)³ Nuchal Translucency (NT) Screening 11-14th week Measure thickness of fluid collection behind fetus' neck Sensitivity (44.4%) vs. Specificity (94.5%)⁴ 	 Retrospective Convenience Infants with of because CHI abnormalities
Placenta Figure 1: Depiction of fetus showing measurement of fetal nuchal translucency	Exclusion
 thickness⁵ <i>Cell-free DNA (cfDNA) Test</i> Optimal detection at 10th week Maternal and placental DNA and miRNA biomarkers in maternal blood⁶ Not previously studied for CHD detection, thus 	Anatomy Ultrasou (n = 1793)
defects	

Goals of this research:

- Compare accuracy of three prenatal screening tests in detecting a cardiac defect
- Provide obstetricians with better knowledge of whether CHD can be detected earlier than the standard 18-20th week anomaly ultrasound
- Earlier prenatal diagnosis can decrease postnatal morbidity and mortality

<u>Hypothesis:</u> cfDNA has an increased accuracy in detecting CHD in earlier gestation, followed by NT screening then the anomaly ultrasound.

Figure 2: Flow diagram of included participants and research methodology

Stephanie Y. Wong¹, Zeynep Alpay-Savasan, M.D.²

¹B.S., Oakland University William Beaumont School of Medicine ²Department of Obstetrics and Gynecology - Maternal Fetal Medicine, Beaumont Health

Table 3: Specificity of Prenatal Screening Tests

Prenatal Screening Tests	<u>Specificity</u>	95% Confidence Interval
Anatomy Ultrasound	99.7%	99.2% - 99.9%
NT Screening	98.0%	96.2% - 99.1%
cfDNA Test	97.4%	95.8% - 98.5%

ivity	vity 95% Confidence Interval	
0%	7.7% - 38.6%	
3%	4.0% - 45.7%	
%	0.1% - 27.3%	

Conclusions

- Anatomy US most accurate at detecting CHD
- NT screening is comparable to anatomy ultrasound
- Small sample population low sensitivity of ultrasound and NT screening
- Limitation: studies performed outside of Beaumont Hospitals

Research Impact:

- Congenital heart disease vs chromosomal anomalies
- Utilize earlier prenatal screening tests before standard 18-20th week ultrasound

Future Research:

- Multicenter data collection
- Combination of screening tests
 - Additional 20.2% of structural abnormalities detected with NT and cfDNA tests combined⁷

References

- Van Der Linde D, Konings EEM, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. JAm Coll Cardiol. 2011;58(21):2241-2247. doi:10.1016/j.jacc.2011.08.025
- 2. Gilboa SM, Salemi JL, Nembhard WN, Fixler DE, Correa A. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation. 2010;122(22):2254-2263.
- doi:10.1161/CIRCULATIONAHA.110.947002 3. Rydberg C, Tunón K. Detection of fetal abnormalities by second-trimester ultrasound screening in a non-selected population. Acta Obstetricia et Gynecologica Scandinavica.
- 2016;96(2):176-182. doi:10.1111/aogs.13037 Sotiriadis A, Papatheodorou S, Eleftheriades M, Makrydimas G. Nuchal translucency and major congenital heart defects in fetuses with normal karyotype: a meta-analysis. Ultrasound *Obstet Gynecol*. 2013;42(4):n/a-n/a. doi:10.1002/uog.12488
- 5. Hyett J, Perdu M, Sharland G, Snijders R, Nicolaides KH. Using fetal nuchal translucency to screen for major congenital cardiac defects at 10-14 weeks of gestation: population based cohort study. 1999:81-85
- 6. Gu H, Chen L, Xue J, et al. Expression profile of maternal circulating microRNAs as non-invasive biomarkers for prenatal diagnosis of congenital heart defects. *Biomed Pharmacother*. 2019;109(36):823-830. doi:10.1016/j.biopha.2018.10.110
- Bardi F, Bosschieter P, Verheij J, et al. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening?. Prenat Diagn. 2020;40(2):197-205. doi:10.1002/pd.5590

Acknowledgements

Thank you to Dr. Alpay-Savasan for helping me throughout this study and with this poster presentation. And thank you to Michelle Jankowski for assisting me in the data statistical analysis.

