

Personal Copy

Category

Metal-Mediated Synthesis

Key words

furans
zinc
cycloisomerization
ynones

A. SNIADY, A. DURHAM, M. S. MORREALE, A. MARCINEK, S. SZAFERT, T. LIS, K. R. BRZEZINSKA, T. IWASAKI, T. OHSHIMA, K. MASHIMA, R. DEMBINSKI* (OAKLAND UNIVERSITY, ROCHESTER AND UNIVERSITY OF CALIFORNIA, BERKELEY, USA; TECHNICAL UNIVERSITY OF LODZ AND UNIVERSITY OF WROCLAW, POLAND; OSAKA UNIVERSITY, JAPAN)

Zinc-Catalyzed Cycloisomerizations. Synthesis of Substituted Furans and Furopyrimidine Nucleosides *J. Org. Chem.* **2008**, *73*, 5881-5889.

Zn-Catalyzed Cycloisomerizations in the Synthesis of Substituted Furans

$$\begin{array}{c} ZnCl_2\\ Zn_4(OCOCF_3)_6O\\ CH_2Cl_2, r.t. \end{array}$$

$$\begin{array}{c} R^1 \\ R^2 \end{array}$$

$$\begin{array}{c} R^3 \\ Cl \\ R^2 \end{array}$$

$$\begin{array}{c} R^3 \\ R^3 \end{array}$$

$$\begin{array}{c} R^1 \\ R^3 \\ R^2 \end{array}$$

$$\begin{array}{c} R^3 \\ R^3 \\ R^3 \end{array}$$

$$\begin{array}{c} R^3 \\ R^3 \\ R^3 \end{array}$$

$$\begin{array}{c} R^3 \\ R^3 \\ R^3 \\ R^3 \end{array}$$

$$\begin{array}{c} R^3 \\ R^3 \\ R^3 \\ R^3 \\ R^3$$

$$\begin{array}{c} R^3 \\ R^3$$

Significance: The 5-endo-dig cycloisomerization of 1,4- and 1,2,4- mostly aryl-substituted but-3-yn-1-ones in the presence of catalytic amounts of zinc chloride etherate in $\mathrm{CH_2Cl_2}$ at room temperature gives 2,5-di- and 2,3,5-trisubstituted furans in high yields (85–97%). The reaction is also applicable to the synthesis of bicyclic furopyrimidine nucleosides starting from 5-alkynyl-2'-deoxyuridines.

 SYNFACTS Contributors: Paul Knochel, Andreas J. Wagner

 Synfacts 2008, 10, 1084-1084
 Published online: 22.09.2008

 DOI: 10.1055/s-2008-1078229; Reg-No.: P10908SF

Comment: ZnCl_2 and the $\operatorname{Zn}_4(\operatorname{OCOCF}_3)_6\operatorname{O}$ cluster have been found to be efficient catalysts for the quantitative cycloisomerization of but-3-yn-1-ones. The reaction proceeds smoothly at ambient temperature without the addition of a base. Most functional groups present in nucleosides are tolerated which makes this protocol an interesting synthetic route to biologically active furopyrimidines.

99%